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Modeling of subdiffusion in space-time-dependent force fields beyond the fractional
Fokker-Planck equation
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In this paper we attack the challenging problem of modeling subdiffusion with an arbitrary space-time-
dependent driving. Our method is based on a combination of the Langevin-type dynamics with subordination
techniques. For the case of a purely time-dependent force, we recover the death of linear response and
field-induced dispersion—two significant physical properties well-known from the studies based on the frac-
tional Fokker-Planck equation. However, our approach allows us to study subdiffusive dynamics without

referring to this equation.
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I. INTRODUCTION

In recent years, systems exhibiting anomalous subdiffu-
sive behavior attracted growing attention in the various fields
of physics and related sciences. The list of systems display-
ing subdiffusive dynamics is diverse and very extensive. It
encompasses, among others, charge carrier transport in amor-
phous semiconductors, nuclear magnetic resonance, diffu-
sion in percolative and porous systems, transport on fractal
geometries and dynamics of a bead in a polymeric network,
as well as protein conformational dynamics, see [1] and ref-
erences therein. Many physical systems subjected to the ex-
ternal potential varying in time exhibit various significant
properties. Therefore, it is a challenging and fundamental
task to investigate the properties of ultraslow diffusion in
time-dependent force fields.

The study of subdiffusive dynamics in the case of a purely
time-dependent force was presented in detail in [2], giving
rise to the modified fractional Fokker-Planck equation
(FFPE). A similar equation was derived in [3] for the class of
dichotomously alternating force fields. However, a model de-
scribing subdiffusion in an arbitrary space-time-dependent
field F(x,7) is still missing. In this paper, we overcome this
gap by proposing another model based on the Langevin
equation and subordination technique without using the FF-
PEs. This is a main departure from recent papers [2,3]. Our
approach establishes a general link between fractional sub-
diffusion and Langevin-type dynamics. Therefore, it pro-
vides good physical insight through the trajectories and al-
lows us to analyze them using Monte-Carlo simulations
[4-7]. The introduced model, describing subdiffusion in a
space-time-dependent potential, recovers exactly the same
physical properties as the ones obtained in [2,3] from the
generalized FFPE, namely death of linear response and field-
induced dispersion.
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A widely accepted approach to study subdiffusive dynam-
ics in the presence of a time-independent force field F(x) is
based on the FFPE, see [8]:

i) orw | P
P =D, [_&x +K&x2}w(x,t). (1)

The above equation, in the continuous-time random walk
(CTRW) framework, was derived explicitly in [9], see also
[1,10]. Here, the operator 0D,l_c', ae(0,1), is the fractional
derivative of the Riemann-Liouville type [11]. It introduces
memory effects to the system. The constant K denotes the
anomalous diffusion coefficient, whereas # is the generalized
friction coefficient.

As shown in [4], the solution w(x,) of Eq. (1) is equal to
the probability density function (PDF) of the subordinated
process

Y(n)=X(S), 2)

where the process X(7) is the solution of the following Itd
stochastic differential equation

dX(7) = F[X(D)]7 'dr+ (2K)"2dB(7), (3)

driven by the standard Brownian motion B(7). The subordi-
nator S, is termed as the inverse-time a-stable subordinator.
It is defined [12,13] as

S,=inf{rU(7) > 1},

where U(7) denotes a strictly increasing a-stable Lévy mo-
tion [14], i.e., an a-stable process with Laplace transform
(e UDy=¢~*" Moreover, B(7) and S, are assumed to be
independent. Physical properties and methods of numerical
approximation of the subordinator S; as well as the interpre-
tation of the subordination techniques have been discussed in
detail in recent papers [4,5,10,12,13,15-18].

Formula (2) is the stochastic representation of the FFPE
(1). Tt describes the multiple trapping scenario, in which the
consecutive trapping events induced by S, are superimposed
to the Langevin dynamics (3), [19]. The role of the subordi-
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nator S, in this representation is analogous to the role of the
fractional Riemann-Liouville derivative ,D!~® in the FFPE,
since they both give rise to the subdiffusive behavior of the
system under consideration (i.e., to power-law waiting-time
distributions between consecutive jumps of a particle). Every
trajectory of S, is obtained as the right inverse of the trajec-
tory of U(7). Consequently, we have

t, t=tj

U(s, =
(S0) t+l, t#1,

4)
where 7;, j € N, is the instant of time when a test particle is
released from a jth trap, and /, is a random leapover time
[20-22]. For a graphical interpretation of Eq. (4) see [22].
Observe that /, is also known as an overshoot in mathemati-
cal literature [23]. Relation (4) will play a crucial role in our
further discussion.

II. TO UNDERSTAND SUBORDINATION

The starting point of our considerations is the process
X(S,) defined in Egs. (2) and (3), describing subdiffusion in a
time-independent force field F(x). In order to obtain a model
with a time-varying force, we have to modify the subordina-
tion X(S,). A first, somewhat naive, attempt to solve the prob-
lem seems to be straightforward. Let us replace the time-
independent force F(x) in stochastic differential equation (3)
with F(x,7) obtaining

dX(7) = FIX(7), 7] 'd7+ (2K)"2dB(7), (5)

and consider the subordinated process Y(r)=X(S,). As a con-

sequence, the force field F(x,S,) corresponding to Y (1) varies
in random time S, but not in real time #, which cannot be
physically accepted. This difficulty has been recently pointed
out in [3] in the context of the generalized FFPE, but not
analyzed further. To visualize this effect, let us consider the
following dichotomously alternating force:

F(x,7) =—cx(- 1)1, (6)

where ¢ is a positive constant and [y] denotes the integer part
of y. The exemplary trajectory of the standard Brownian par-
ticle biased by this force is presented in Fig. 1.

If the initial position of the particle is assumed x=0, then,
in the first time unit, the harmonic form of the force (6)
yields its oscillation around the origin. After the first time
unit passes, the sign of the force alters, causing dramatic
change of the motion. The particle, during the second time
unit, moves either to the positive or negative direction. When
the second time unit passes, the sign of the force alters again
to the harmonic form. The particle moves from its earlier
position towards the equilibrium point, and recovers the os-
cillation around the origin during the third time unit. The
speed of the return to the equilibrium depends on the con-
stant ¢ in (6). The constant ¢=10> chosen in Figs. 1-3 is
relatively large for better illustration of the force-switching
moments (the particle returns to the equilibrium very
quickly). In general, after each time unit, the sign of the force
changes, switching the motion of the particle with character-
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FIG. 1. (Color online) An exemplary sample path of the stan-
dard Brownian particle biased by the dichotomously alternating
force (6). After each time unit the sign of the force changes, switch-
ing the motion of the particle. The particle either oscillates around
zero or moves left/right. Note that only in the case of standard
Brownian diffusion 7=¢. The parameters are c=10? and 7=K=1.

istic moves towards origin, when the force (6) takes the har-
monic form.
Now, let us analyze the trajectory of the introduced pro-

cess Y (t)=)?(S,) with the alternating force (6). An exemplary

sample path of Y(1) is presented in Fig. 2. The constant in-
tervals of the trajectory correspond to the heavy-tailed wait-
ing time between consecutive jumps of a particle in the un-
derlying continuous-time random walk scenario. Such
constant intervals are typical for subdiffusion [4,5]. How-
ever, the shape of the trajectory confirms that the force F
varies in a random time. We observe the changes of particle
motion in random instants of time and not after each time
unit, which is the consequence of the subordination proce-
dure. This confirms our previous statement about the failure
of such an approach.

The above considerations show that the process ?(t)
=X(S,) is not the correct model for describing subdiffusion in

t
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FIG. 2. (Color online) An exemplary sample path of the process
Y()=X(S,) with the dichotomously alternating force (6). The con-
stant intervals of the trajectory are typical for subdiffusion. How-
ever, the shape of the trajectory indicates that the force F' varies in
random time, which is physically not acceptable. We observe the
changes of particle motion in some random time points and not
after each time unit, cf. Fig. 1. This is the consequence of the

subordination procedure. The parameters are a=0.9, ¢=102, and
n=K=1.
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FIG. 3. (Color online) An exemplary trajectory of the process
Y(1)=X(S,) describing subdiffusion in a space-time-dependent po-
tential with the dichotomously alternating force F(x,) given by (6).
The shape of the trajectory confirms that the force F varies in the
real time 7, since, by (4), U(S,)=t. Note that the change of the
particle motion is observed after each time unit, cf. Figs. 1 and 2.
The constant intervals of the trajectory are typical for subdiffusion

and represent the heavy-tailed rests of the test particle. The param-
eters are a=0.9, ¢=10%, and n=K=1.

a space-time-dependent potential. However, this first attempt
presented above is a step towards the right direction. We
need only to eliminate the obvious drawback of the model,
which is the force varying in the random time S, but not in
the real time 7. To do so, we take advantage of relation (4)
and modify equation (5) in the following way:

dX(7) = FIX(9),U(D)]5 "d7+ (2K)"dB(7). (7)

Next, we consider the subordinated process
Y(1) = X(S)). (®)

We claim that the process IA/(t) describes subdiffusion driven
by the space-time-dependent force F(x,7). Indeed, after the

subordination X(S,), the actual force is given by F[x,U(S,)].
Therefore, using relation (4), we obtain that in every release
moment ¢=t;, the particle is biased by the force F (x,1). In
other words, we subordinate the process without subordinat-
ing the time-dependent force. So, the force corresponding to

Y(¢) varies in the real time 7. Additionally, the subordinator S,
introduces heavy-tailed rests of the particle, which are char-

acteristic for subdiffusion. Thus, IA/(t) describes subdiffusion
in the time-varying force field F(x,7). As a confirmation of
our result, in Fig. 3, we present an exemplary trajectory of

the process Y(1)=X(S,) with the dichotomously alternating
force F(x,r) given by (6). The physical requirement that the
force varies in the real time ¢ is evidently fulfilled. We ob-
serve that changes of the particle motion appear exactly after
each time unit. The particle, alternatively, oscillates around
zero or moves towards positive/negative directions of the x
axis. Observe that the motion does not have periodic charac-
ter. The particle can move either to the left or to the right
with the same probability, as it follows from the symmetry of
the statistical picture presented in Figs. 4 and 5. The constant
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FIG. 4. (Color online) Quantile lines (10%, 20%, ..., 90%) cor-
responding to the process Y(r)=X(S,) in the presence of the dichoto-
mously alternating force (6). The lowest line is the 10%-quantile
line, the second line from the bottom corresponds to the 20%-
quantile line, etc. The shape of the lines indicates that the force does
not switch after each time unit, thus F does not vary in the real time
t. This is the consequence of the random time change after subor-

dination. The parameters as in Fig. 2. The quantile lines were esti-
mated by Monte-Carlo methods [4,5].

intervals of the trajectory indicate the subdiffusive character
of the motion.

As an additional statistical argument in our discussion we
present nine estimated quantile lines (10%, 20%, ..., 90%)

corresponding to the processes Y(r)=X(S,) and Y(1)=X(S,).

The shape of the quantile lines of Y(t) =)?(S,) (Fig. 4) clearly
indicates that the force does not switch after each time unit.

On the contrary, the quantile lines of Y (t):}A((S,) (Fig. 5) are
typical for the dichotomously alternating force (6). Evi-
dently, their shape changes after each time unit, which is
another confirmation that the force varies in the real time .
Although the trajectories in Figs. 2 and 3 are similar, the
corresponding quantile-line picture does not preserve these
similarities. The reason for this is the fact that, contrary to

1.5

FIG. 5. (Color online) Quantile lines (10%, 20%, ..., 90%) cor-

responding to the process ¥(1)=X(S,) in the presence of the dichoto-
mously alternating force (6). The lowest line is the 10%-quantile
line, the second line from the bottom corresponds to the 20%-
quantile line, etc. The shape of the lines confirms that the force F
varies in the real time . The change of their shape is observed after
each time unit, cf. Fig. 4. The parameters as in Fig. 3. The quantile
lines were estimated by Monte Carlo methods [4,5].
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the case of f/(t):)A((St), each trajectory of Y(©) =)?(S,) is
qualitatively different, since the random moments of force
switching are different for every realization. The symmetry
of the quantile lines wrt. # axis in Figs. 4 and 5 is physically
justified by the fact that both noise and potential in the mod-
els are symmetric. Recall that a p-quantile line, p € (0, 1), for
a stochastic process Y(¢) is a function g,(r) given by the
relationship Pr[Y(7) <g,(1)]=p [14]. The Monte-Carlo meth-
ods of the presented numerical results are based on the clas-
sical Euler scheme applied for subordinators [4].

III. DEATH OF LINEAR RESPONSE AND FIELD-INDUCED
DISPERSION

The validity and usefulness of the introduced model Y(©)
can be verified now by considering some special cases of a
space-time-dependent force F(x,t). The first special case is
the time-independent force F(x,)=F(x). In such a setting,

IA/(t) reduces to the process defined by Egs. (2) and (3).

Therefore, the PDF of Y(£)=Y(¢) obeys the dynamics of the
FFPE (1).

More interesting results are obtained in the case of a
purely time-dependent force F(x,t)=F(t). Then, by Egs. (7)

and (8), Y (7) takes the form
S[
Y(r)= n_lf FLU(D]dT+ (2K)"*B(S,). )
0

It can be shown that the integral in the above formula is
equal to

S, ' t
J F[U(T)]dT=J F(u)dSu=S,F(t)—f S, F' (u)du.
0

0 0
(10)

Using this result and methods of calculating integrals of in-
verse subordinators [24], we calculate moments of the pro-

cess Y(¢). For the first moment ml(t):<f/ (1)) we have

iy (1) = [T(@) ] (e,

which gives
1 t
m (t)=—f Fu)u®'du. (11)
: Fa)nl),

For the second moment mz(t)=<f’2(t)) we get

d (" 2K
niy (1) = 2[I'() n]‘lF(t)ZfO (t—w)*"'my (u)du + I !
Therefore,
my(t) = oy (1) + 0,(t) (12)
with

t d s
al(t)=2[F(a)n]‘1f dsF(S)—J (s = u)*my (u)du
0 dsJg

and
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FIG. 6. (Color online) The first two moments of the process
Y(1)=X(S,) with periodic rectangular driving force, evaluated using
expressions (14) and (15). In the top panel the mean particle posi-
tion stagnates. This effect is termed “death of linear response” [2].
The linear growth of (X*(S,))"/* in the bottom panel means that the
asymptotic growth of the field-dependent second moment is given
by t%. This is the manifestation of the effect called “field-induced
dispersion” [2,3]. The parameters are «=0.4, 7=f,=1, and
K=1/2.

2K

oy(1) = 2—Kft uldu=———1.
I'a)J, I'a+1)

Surprisingly, nontrivial expressions (11) and (12) for the first

two moments of )A’(t) are exactly the same as the ones ob-
tained in [2] for the generalized FFPE

&W(x’t)‘_ @i i -«
ot ‘{‘ 7 o Kaxz]oDz wx,n).  (13)

Moreover, in the presence of the periodic force
F(t)=f, sin(wr), the process )A’(t) displays two significant
properties, namely, “death of linear response” and “field-
induced dispersion” (see [2,17,25] for the details). These
properties evidently justify physically our approach, cf. Fig.
6. Let us emphasize that by the Monte Carlo methods from

explicit integral representation (9) one can numerically cal-

culate all the moments of )A’(t).

For the periodic rectangular driving force (6) studied in
[3], using (10), we obtain the following elegant and useful
representation:

N

Y(0) = 777 fol= DS, =297 o 2 (= 1)'S; + (2K)2B(S)),
i=1

where N<t<N+1. The above formula immediately implies
that the explicit form of the first moment reads

<Y(t)>—r(a+1)(—1)Nt _F(a+l)§(_ i@, (14)

This result agrees with the one derived by a different method
in [3], where it was also shown that the mean square dis-
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placement grows as *. Moreover, we get the exact result for
the second moment,

(Y1) = %ﬁ“— A0 o) (- Mé (= DYS:S)
N - 2K
+ 4(77‘1fo)2i§1 CO™SS)+ Tyt 19
where
u2a a

S0 =t aar D) F Plas 1)L (e=y)*y='dy

for u<t. Using (14) and (15) one verifies that the properties
“death of linear response” and “field-induced dispersion” are
present also in the case of a periodic rectangular driving
force, see Fig. 6, without referring to the FFPE methodology.

IV. CONCLUSIONS

The paper introduces an approach to studying of subdif-
fusion without referring to the FFPE. It is based on the
Langevin-type equation and subordination, therefore it pro-
vides good physical insight through the trajectories of the
studied process. We have proposed a general model (7) and
(8) describing subdiffusion in a space-time-dependent poten-
tial, which recovers exactly the same physical properties as
the ones obtained in [2,3] from the generalized FFPE (13).
Additionally, an extension of the model to a more general
class of noises (e.g. Lévy noise), is straightforward by the
method of [5], see also [26-28]. Namely, Eq. (7) is replaced
by

dX(7) = FIX(n),U(D)]7 dr+ KV*dL (1), (16)
where L,, 0<u<2, is a u-stable Lévy motion [14]. This

suggests the following modified FFPE with Lévy flights and
space-time-dependent force F(x,?):

PHYSICAL REVIEW E 77, 036704 (2008)

iF(x,t)

&w(x,t)_{
T oo n

P + KV#]OD}‘“w(x, n, (17)

where V* is the Riesz fractional derivative. The occurrence
of the operator OD}_“ is induced by the heavy-tailed waiting
times between successive jumps of the particle, whereas V#
is related to the heavy-tailed distributions of the jumps. Let
us note that a crucial point in the justification of the above
claim is the fact shown in this paper that the force F(x,?)
should not be subordinated (compare the discussion of Figs.
1-3), meaning that it must appear to the left of the fractional
derivative D,l_“, but to the right of the partial derivative 5—'1.
For a special case u=2 this fact was also formulated in [3].
However, our detailed analysis presented in Sec. II adds
some different supporting arguments.

At this stage of understanding the problem, one does not
know if modified FFPE (17) holds for arbitrary space-time-
dependent force F(x,t). For physical arguments see [3].
However, we propose here an alternative approach (7) or
(16) for subdiffusive dynamics in space-time-dependent
force fields. This paper demonstrates that the subordination
technique is useful when applied correctly to the process, but
not to the time-dependent force field. Since our model is
based on the Langevin-type equation (7) or (16), it allows for
both analytical and numerical study of subdiffusive dynam-
ics [4—6] without referring to (13) and (17).

Finally, let us underline that in cases where we already
know the FFPE, our approach recovers physical properties of
subdiffusion. For example, it is demonstrated in Sec. III that
one can derive such significant properties as “death of linear
response” and “field induced dispersion” from Eq. (7) solely.
This is the main difference between our approach and the
recent works [2,3].
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